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A RELIABILITY GRO~rFH MODEL INVOLVING
DEPENDENT COMPONENTS

by

N. Langberg and F. Proschan1

Abstract

Earlier papers have shown how to convert competing risk models involving

dependent random variables into models involving only independent random

variables, while simultaneously preserving the distribution of the mininaim and
the probabilities of the various failure patterns. In the present paper, we

consider a sequence of such conversions occurring at successive points in

chronological time in which the independent random variables are becoming
stochastically larger. We obtain results which essentially demonstrate that

the limiting distributions in the sequence of dependent models “correctly”
correspond to the limiting distributions in the sequence of independent models.

These results have applications in reliability growth models and in bio-

medical competing risk models in which the competing risks are increasing

with age; in these models dependency is permitted among the random variables.
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A RELIABIL ITY GROWTH MODEL INVOLVING -

DEPENDENT Ci)4PONENTS

by

N. Langberg and F. Proschan
Florida State University

1. Introduction. In several earlier papers, Tsiatis (1975), Miller (1977) ,
and Langberg , Pzoschan, and Quinzi (1978) show how to convert various competing
risk models involving dependent random variables into models involving only
independent random variables, while simultaneously preserving the distribution
of the minimum and the probabilities corresponding to certain “failure patterns”.

Explicit equations are presented which yield the distributions of the independent
variables . In a more recent paper , Langberg , Proschan, and ~ iinzi (1977) develop
statistica l estimators of parameters of interest in competing risk models in
which causes or t imes of death (in the biomedical context ) or of failure (in
the reliability context ) are not necessarily independent .

In the present paper we present a result which should prove to be basic
in converting reliability growth models involving dependent failure times into
equivalent models involving only independent random variables . Analogous
applications exist in the biomedical field in which survival functions may be
decreasing? rather than increasing, with chronological time . The probabilistic

theorem pr.s.nted will b. useful in inferenc, in reliability growth models involving

dependent failure times.

tmroughout th. paper we use “decreasing” in plac. of “nonincreasing” and “increasing”in place of “nondecrsasthg”.
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2. The Reliability Growth Model. The notation and terminology are as

in Langberg, Proschan, and Quinzi (1978).

Consider a series system of n components undergoing improvement as time

passes. At fixed chronological time u, 0 � u c u0 Cu0 possibly infinite)

component i has random lifelength T~ (u) for i a 
~~, ... , n, where T1(u) , .. ., T~(u)

are not necessarily mutually independent . We say that failure pattern I occurs

if the simultaneous failures of the components in subset I of Cl , ... , n} and

of no other components causes (i.e., coincides with) the failure of the system.

Define

I if failure pattern I occurs at time u
~ T(u)) a

0 otherwise.

Let S(u) and T(u) represent the vectors of component life lengths of two systems

whose system life lengths are S(u) and T(u) , respectively. We say that the

two systems are equivalent in life lengths and patterns at time u

(S(u) T(u)) if P(S Cu) ‘ t , ~ (S(u)) — I) • P (T(u) ‘ t, F~ (T (u) ) — I) for each

t � 0 and each I c Cl , ... , n}. Thus , two systems which are equivalent in life

length and patterns are such that Ci) their life lengths have the same distribu-

tion and (ii) the corresponding failure patterns in the two systems have the

same probability of occurrence.

The main result of Langb.rg, Proschan, and Quinzi (1978) may be restated

in the context of our model as follows:

2.1. Thenrem. For fixed u, 0 ~ u c u0, let T(u) - min (T~ (u) , 1 £ i S n)

denote the life length of an n-component series syst em, where T~(u) represents
the life length of component i, i • 1, ..., ii. Define P~~i(t) • P(T (u) t,

((T(u)) • I), F 1(t) • P(T (u) ‘ t, ~(T(u)) — I) , P (t) • P(T (u) t), andU, U
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• sup{x: F~(x) > 0}. Then the following statements hold :

Ci) A necessary and sufficient condition for the existence of a set of

independent random variables (H1, I c (~, ... , n}) which satisfy H(u ) ~~ 1(u) ,
where H(u ) — min(H1(u) , I c (1, .. ., n)), is that the sets of discontinuities
of the F

~~j 
be pairwise disjoint.

(ii) The distributions of 01(u) , I c (1, ..., ni , are uniquely determined
on the interval (0, ci(Fu)) as follows :

P(H1(u) > t) - exp[_J (dF
~~1
/F
~
)).

(2.1)

P (a (I ,3))/(P (a (1,3)) + f (a (1,3))),

0 � t c a(F
~), where F~~1 is the continuous part of F

~~1, 
(a~~I,j)} is the set

of discontinuities of P
~~

1, in [0 t3 and f
~~i

(a
~

(I,j)) is the size of the junps of 
~u I

at

(Note that G~2 1  may place mass at infinity.)

The survival probabilities 
~ 

1 - C 
I for H1(u) , the time until aU. U ,

shock occurs which simultaneously destroys subset I, f or I c Cl , ... , n} are
obtained by solving the identities:

ii ~~ 1(t) 
a P Ct), t � 0, (2.2)Ic(1,..., nJ U . u

and

f II~~ ~dG 1 — P  1(t), t~~o. (2.3)
t J ~I •
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Thus at each fixed instant u of chronological time, we may “replace” the

original series system of d~peMent components by a set of mutually in4~pendent

sources of shock; a given source of shock fails a corresponding subset of com~

ponents. Moreover, the replacement is so chosen as to yield the same joint

distribution of failure pattern and system life length as possessed by the

original system. Finally, the distribution of the time of each type of shock

occurrence is explicitly specified in (2.1).

Suppose now that the system is experiencing reliability growth; specifically,

assume that: 
-

Ci) G
~~i 

is increasing in u , 0 5 u c u
0 

for each I c (1, ..., ni , so that

H1(u) is stochastically increasing in u, 0 5 u c u
0 

for each I c (1, ... , n}.

That is, each type of shock is occurring with decreasing frequency as chrono-

logical time passes. This, in turn, implies that the system life length T(u)

is stochastically increasing in u. Since ~~~1(t) is monotone increasing in

u c u , it follows imeediately that the ~ 1(t) converge to inf sup ~ 1
(x)

0 U, x>t u<u
for each t � 0, I c (1, .. ., n}; call this limit G1(t). ~1(t) is a survival

function, with mass possibly at infinity.

Three basic questions now arise:

Cl) Does the joint distribution F
~~i 

of failure pattern and life length

converge to a joint distribution as u ~ u0 for each I 
c (1, ... , n}?

(2) If such limiting joint distributions exist , do they coincide respectively

with the solutions (call them F
1
) of (2.1) corresponding to the limit distributions

C1, I c Cl , ... , n} (as we would hope)?

(3) Does the system lifelength distribution F
~ 

converge to a lifelength

distribution as u . u0
; if so, does it coincide with the solution F obtained

from (2.2) where the subscript u is omitted?

In the next section we prove that under mild , reasonable conditions, affirm-

at ive answers exist for all three questions. 

- - -_ - _ _ -
_ _ . - _ _ . - _ - _ - _ _ . _ _ - -_
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3. Limit Results in the Reliability Growth Model. In this section we give

convenient sufficient conditions to yield affirmative answers to questions (1),

(2) ,  and (3) at the end of Section 2, and present proofs of our results.

We are considering the model of Section 2. We make the following two

additional assumptions:

(ii) The sets of discontinuities of the G
~~i 

are pairwise disjoint for each

fixed time point u, 0 � u < u0.

(iii) The sets of discontinuities of the G1 are pairwise disjoint.

The main result may now be stated:

3.1. Theorem. Assume the reliability growth model specified in Section 2

and assume Ci), (ii), and (iii). Then

(1) h a  F 1(t) exists for each t ~ 0 and each I c (1, ... ,U ,
0

(2) h a  F 1(t) • F
1(t) for each t � 0 and each I c Cl , ... ,U ,

0

(3) u n  F Ct) exists and F(t) for each t � 0; moreover, F (t) is
u.•u U

increasing upward to P(t) as u increases upward to u0.

To prove Theorem 3.1, we wi ll make use of

3.2 Leema. Let Uk be an increasing sequence converging to u0. Then for

each t � 0 and I c (1, ... , n}, 1 in sup F 1(t) ~ F~ (t).k-s.’ Uk ’
Proof of Leema. By (2.3), we m a y  write:

F ( t ) - f n ~~ dG � f f l~~~~ dGUk. t JsI “k’ k~ t Jal

since each C S 
~~~~

. Next note that
U ,

-
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~ f - ‘II ~~dG I - J~ 1(t) - 
~ ~(x )] d~ [1 - ft

t J~I 
i’
, ’ t k’ Uk’ J�I

S f [
~ 1(t) 

- 

I(’~~
1 d (1 - ii ~j(X)].t Uk’ U

k~ 
X JxI

&it by the Lebesgue dominated convergence theorem,

him J [
~ 1(t) - ~ Cx)] d [1 - ii ~ Cx)]k-p.’ t Uk’ ~~~ X JxI

• f [~~(t) - ~1(x) ] dx [1 - 

~~~~~~~

• f IT ~~(x) dG1(x) —
t J�I

by assumption (iii). The desired Conclusion now follows. J~
We may now prove Theorem 3.1.

Proof of Theorem 3 • 1 (1), j.~~ 
Let (uk

}, 0 5 Uk < u0, be an arbitrary

sequence converging to u0 and let t � 0. By (2.2),

V Ct) — II 
~ ~~~~~Ic{1,.. .,n} Uk ’’ IcC i,.. . ,n} Uk ’

him sup II ~~ 1(t) — h a  sup Fk-s.’ Ic(l,...,n) Uk~ k-i.’ Ic{l,...,n} Uk ’

~.it

him sup V 1(t) � Ha sup F 
1(t) �k-s.’ Ic(l ,...,n) Uk ’ Ic{l,...,n)k-s. “Ic’ Ic{l ,...,fl}

by L e a  3.2. Now by assumption (iii) and the appropriate version of (2.2) we
have:

• IT 
~1(t).IcC i,.. .,n) Ic(l,...,n)



7

Recalling that ~1(t) lim ~ 1(t) from Section 2 and summarizing the inequalitiesk-i.’ Uk,
above, we may state:

IT Ct) � I im sup 
~~ 1(t) � V~ Ct) = TI G1 (t).Ic{l,. . .,n} Ic{L,. ..,n}k-’.’ k’ IcU,. ..,n) Ic{1,...,n)

The desired conclusions (1) and (2) now follow immediately.

Proof of Theorem 3.1 (3). By (2.2), him V (t) exists since each lim
u-itl U

0 0exists. Next note that

TI 
~1(t) ljm TIIc{l,...,n} Ic{l ,. ..,n} u-’-u~, IcU,. ..,n}

him V 1(t) = u r n  V Ct).
~~~ 

Ic{i,. . .,n) U1 U

The monotonicity of V
~
(t) in u is a consequence of the monotonicity of each

~ HIu,I
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4. Extensions, Modifications, and Generalizations.

4.1. Remark. In the reliability growt h model discussed above , we assumed

that reliability growth was occurring during the interval of chronological

time [0, t). Obviously, the conclusions of Theorem 3.1 may be obtained by

assuming that reliability growt h occurs at the time points of any subset U

of [0, o.) (or , for that matter , over the entire half-line). As examples ,

consider:

(a) U = {u , 2u, 3u, .. .1, where u > 0 ,

(b) U = ( 0 � u 1 < u 2 < u 3 < .. .}

(c) U~~~{[0 , u ) c u 1 < u 2 < ...},

etc. Moreover, the set U need not be deterministic, but may be random.

4.2. Remark. In the model of Section 2 and the corresponding result,

Theorem 3.1, we assumed that shock intervals from each source were stochastically

increasing with chronological time. It is clear that by reversing inequalities

and the direction of monotonicity, we can obtain a dual to Theorem 3.1 in which

the intervals between shocks from each source are stochastically decreasing

with chronological time. System reliability (or in the biomedical context,

organism survival probability) would decrease with chronological time.

4.3. Remark. The model of Section 2 and the limit results of Section 3

were formulated in terms of reliability growth. An equally important and useful

application exists in the context of competing risks of death of a biological

organism from a variety of diseases, accidents, or other causes. In this

context, Remark 4.2 is especially relevant. We consider a situation in which

an organism is subject to death as a result of any of a number of diseases

or combinations of diseases. As time passes, the organism becomes more
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vulnerable to each of the diseases. Note that the model now appropriate differs

from the model of Section 2 only in the direction of the monotonicity; i.e.,

the different types of shocks are becoming stochasticahly more frequent, rather

than, as in the first model, stochastically less frequent .

4.4. Remark. In the reliability growth model, we are able to deduce mono-

tonocity of 
~~~~~

‘ 
system reliability as a function of chronological time u.

However it is not necessarily true that each V is monotone in u. This is a
— u ,I

consequence of the fact that as some modes of failure become less likely, others

may become more likely.

4.5. Remma!k. Assumption (iii) of Theorem 3.1 can not be obtained as a

consequence of assumptions (i) and (ii). A simple counterexample is available

to verify this assertion.
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